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We developed a photoacoustic imaging system that has real-time imaging capability with optical resolution. The
imaging system is capable of scanning at 20 Hz over a 9 mm range and up to 40Hz over a 1 mm scanning range. A
focused laser beam provides a lateral resolution of 3.4 ym as measured in an optically nonscattering medium. Flows
of micrometer-sized carbon particles or whole blood in a silicone tube and individual red blood cells (RBCs) in
mouse ear capillaries were also imaged in real time, demonstrating the capability to image highly dynamic processes
in vivo at a micrometer-scale resolution. © 2011 Optical Society of America

OCIS codes: 170.3880, 170.5120, 180.5810.

Photoacoustic tomography (PAT), detecting ultrasound
signals generated from photon absorption, provides
optical absorption contrast in vivo for structural, func-
tional, and molecular imaging [1-4]. PAT has two major
modes: computed tomography (PACT) and focused-
scanning tomography (PAM). In PAM, a single focused
ultrasound transducer is mechanically scanned across
a two-dimensional plane to acquire a three-dimensional
image. At each scanned position, the acoustic time-of-
flight provides depth information, and the acoustic focus-
ing (AR-PAM) [4] or optical focusing (OR-PAM) [5] yields
lateral resolution. Compared with PACT, PAM has a sim-
pler implementation. Moreover, the spatial resolution of
PAM can be scaled to image objects from subcellular or-
ganelles to organs [6]. However, most PAM systems uti-
lize a precise ball-screw scanning mechanism, making it
inherently difficult to achieve high scanning speed. This
limitation calls for new technology to image dynamic pro-
cesses in vivo with high spatial resolution. Fast scanning
speed can sufficiently reduce the time to acquire a image
so that dynamic processes can be imaged and motion ar-
tifacts can be mitigated. A high-speed voice-coil stage has
been used to improve the scanning speed in an AR-PAM
system, but only slow photoacoustic imaging was demon-
strated [7]. Another PAM modality employed optical
scanning with weak acoustic focusing to improve scan-
ning speed [8]; however, the weak acoustic focusing
limited signal-to-noise ratio (SNR).

We present a PAM system that can provide real-time
cross-sectional (B-scan) imaging with optical lateral re-
solution. The system utilizes a voice-coil linear transla-
tion stage to achieve high-speed scanning. Tight
optical focusing provides a high lateral resolution of
3.4 ym in optically nonscattering medium.

As shown in Fig. 1, a pulsed laser delivers light to the
photoacoustic scanning probe through a single mode op-
tical fiber. The laser beam is focused by a set of optical
lenses and then reflected on an aluminum-coated prism.
The delivered laser pulse energy may vary from several
tens of nanojoules to over 100 nJ. An ultrasound transdu-
cer (V2022 BC, Olympus NDT) is employed to detect
photoacoustic signals. The ultrasound transducer fo-
cuses on the same spot as the optical beam through
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two prisms and an acoustic concave lens (6 mm aperture,
0.5NA in water). The optical and acoustic components
are attached to a base plate to form a scanning probe,
which weighs less than 40 g.

The scanning probe is mounted on a voice-coil linear
translation stage (VCS-1010, Equipment Solutions, Sun-
nyvale, CA, USA), to create a fast-scanning axis (x axis).
Photoacoustic signals are amplified by two amplifiers
(ZFL-500LN+, Mini-circuits, NY, USA) and then acquired
by a high-speed digitizer (DAQ) (ATS9350, Alazar Tech
Inc., Pointe-Claire, QC, Canada), using a sampling rate
of 500 MHz. The imaging system is capable of scanning
at 20 Hz over a 9 mm range and up to 40 Hz over a 1 mm
range. The B-scan frame rate of the imaging system is
currently limited by the laser repetition rate of 4 kHz.
In this Letter, we demonstrate fast scanning ability over
small scanning ranges. However, the scanning range can
be readily increased by using a faster pulsed laser with-
out sacrificing the scanning speed. The fast B-scan speed
shortens the time to acquire a volumetric image, and the
imaging system can work in a repetitive B-scan mode to
image highly dynamic processes in real time.

As shown in Fig. 2(a), the lateral resolution of the PAM
system was quantified by imaging a sharp edge in water.
The FWHM of the line spread function was 3.4 ym. The
axial resolution was estimated to be 15 ym by the system
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Fig. 1. (Color online) Schematic of voice-coil-driven fast-

scanning OR-PAM.
© 2011 Optical Society of America
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Fig. 2. (Color online) (A) Lateral resolution test on a sharp
edge. ESF, edge spread function; LSF, line spread function.
(B) Test of penetration depth by imaging a needle obliquely in-
serted into biological tissue. (C) In vivo maximum amplitude
projection (MAP) image of mouse ear vasculature. (D) Close-
up of the region enclosed by the dashed box in (C); arrows
denote capillaries. NPA, normalized photoacoustic amplitude.

bandwidth of 100 MHz and the speed of sound in biolo-
gical tissue (~1.5um/ns). The penetration depth of the
PAM was measured by imaging a needle inserted
obliquely into the leg of a living mouse. As shown in
Fig. 2(b), the needle is visible at a depth of 1.2-1.4 mm
into the tissue. Figure 2(c) shows an image of the micro-
vasculature in a nude mouse ear acquired in vivo at an
optical wavelength of 570 nm. Figure 2(d) is a close-up
image of the region indicated by the dashed box in
Fig. 2(c). Capillaries, the smallest blood vessel, are
clearly resolved.

The SNR of the imaging system was measured by ima-
ging a slice cut from a graphite rod (99.995%, Sigma-
Aldrich Co., St. Louis, Missouri, USA). The laser energy
was 40 nJ per pulse, and the average SNR was 45 dB.

Flows of carbon particles with a mean diameter of
6 ym were imaged in real time in repetitive B-scan mode.
As shown in Fig. 3(a), a syringe pump was used to control
the flow speed. The PAM scanned in parallel with the
tube at 20 Hz. Figure 3(b) shows a representative B-scan
image. The high-resolution real-time B-scan images pro-
vided the flow speed distribution along the depth direc-
tion of the tube. Figure 3(c) shows the distribution along
the x axis of the photoacoustic signal at one depth as a
function of time. The slope of each carbon particle tra-
jectory is proportional to the flow speed at this depth.
In the time domain, the flow speed v at the depth z can

be written asv(z) = k Afmfkl S A,,Whereklsacon—

stant coefficient and v, is the scanmng speed. When the
scanning speed is much higher than the flow speed,

which is the case here, the term Ax/ Al can be disregarded.

The flow speed can be approx1mated with v(2) = k42 Y,
The flow speed can be more robustly calculated in the
frequency domain. The two-dimensional Fourier trans-
form of the data in Fig. 3(c) is shown in Fig. 3(d). F,
and F', are the temporal and spatial frequencies asso-
ciated with ¢ and x, respectively. From the Fourier
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Fig. 3. (Color online) (A) Schematic of the experiment setup
for carbon particle flow measurement. (B) Representative
B-scan flow image across the dashed-box area in (A).
(C) Distribution of imaged carbon particles along the x axis
at one z axis position versus time. (D) Frequency spectrum
of data in (C) obtained with two-dimensional Fourier transfor-
mation. (E) Imaged parabolic flow speed along the z axis. NPA,
normalized photoacoustic amplitude; NSD, normalized spec-
trum density.

__ 2z 1
transformation, we have AF, = N At, AF, =¥ where

N, and N, are the sample lengths in the ¢ and x axes, re-
spectively. Hence, the flow speed v can be rewritten as
v(z) = k%F A” =k ﬁ{ ﬁg’ Using the syringe pump, the coef-
ficient k was calibrated to be 2.2. As shown in Fig. 3(e), a
parabolic flow distribution along the depth direction was
computed based on the real-time photoacoustic images.

Flows of whole bovine blood in a rubber tube were im-
aged at a 20 Hz B-scan rate. Variations in concentrations
of RBCs were resolved. Figure 4(a) shows a representa-
tive B-scan image. By changing the speed of the syringe
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Fig. 4. (Color online) (A) B-scan image of whole blood flowing
in a tube. (B) MAP along the 2 axis of the B-scan image versus
time. (C) Two-dimensional frequency spectrum of the data in
(B). (D) Measured flow speed versus the preset values. NPA,
normalized photoacoustic amplitude; NSD, normalized spec-
trum density.

pump, the flow speed within the penetration depth was
varied from 0.04 to 0.25 mm/s. The same calibration k
used for the carbon particle flow was employed to com-
pute the blood flow speed. The measured flow speeds, as
shown in Fig. 4(d), agree with the preset flow speed.

In a nude mouse ear, individual RBCs traveling in a
capillary were imaged in vivo at a B-scan rate of 40 Hz.
Figure 5 shows individual RBCs flowing in the capillary,
and a realtime video for individual RBCs flowing
(Media 1) is attached. The flow speed was computed
in the frequency domain, as shown in Fig. 5(c), using
the coefficient k calibrated in the carbon particle flow
experiment. Over 5s, the average flow speed in the
capillary was 0.13mm/s, with a standard deviation
of 0.03 mm/s.

All experimental animal procedures were carried out
in conformance with the laboratory animal protocol ap-
proved by the Animal Studies Committee of Washington
University in St. Louis.

To our knowledge, this is the first time PAM has de-
monstrated fast scanning capability at a frame rate of
up to 40 Hz with optical resolution. Fast scanning OR-
PAM can improve the imaging efficiency by tens of times,
image highly dynamic processes in real time, and poten-
tially reduce motion artifacts. This provides potentially
broad applications. One example is functional imaging
of RBC flows in a capillary in vivo. Although other
imaging technologies, such as confocal microscopy,
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Fig. 5. (Color online) (A) In vivo B-scan of single RBCs
flowing in a mouse ear capillary. (B) MAP along the z axis of
the B-scan image versus time (Media 1). (C) Two-dimensional
frequency spectrum of the data in (B). NPA, normalized photo-
acoustic amplitude; NSD: normalized spectrum density.

two-photon microscopy, and optical coherent tomogra-
phy also can image RBC flows in a capillary in vivo, none
of them can provide optical absorption contrast. More-
over, OR-PAM can measure oxygen saturation (SO,),
which is an important parameter for functional imaging.
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